
Relativity and the future of vertical datums –
about the geometry of space-time for geodesists

Martin Vermeer, Aalto University



How the story starts: Pythagoras (1)
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The Pythagoras theorem (left) and its version in
rectangular co-ordinates (right): distance between P and
Q, |PQ|, is computable from two co-ordinate differences
∆x and ∆y .



Pythagoras (2)

The equation is
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,

in which ∆x = xP − xQ, ∆y = yP − yQ etc.

|PQ| is an invariant: it doesn’t depend on the co-ordinate frame
used, xy or x ′y ′. The mathematical form of Pythagoras, called
the metric, describes the geometric behaviour of space.

Often, the differential form of the equation is used:

ds2 = dx2 + dy2,

valid also on a curved surface if the distance between
points P and Q, ds, is small.



Pythagoras (3)

In three-dimensional space, Pythagoras is

|PQ|2 = ∆x2 + ∆y2 + ∆z2,

and in general n-dimensional space, its generalization would
be

|PQ|2 = Σn
i=1 (∆xi)

2 ,

with i the “dimension counter”:

∆x1 = ∆x

∆x2 = ∆y

∆x3 = ∆z

etcetera. End of alphabet.



Pythagoras and the triangle inequality
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In the figure, Pythagoras tells us
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√
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2 ,

b =
√
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c = c1 + c2,

yielding
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This is the triangle inequality: the shor-
test path from A to B is the straight
path ADB. If d > 0, the path ACB will
always be longer.



The shortest distance and the geodesic
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We may apply the triangle inequality repeatedly,
i.e., recursively (dashed little triangles) to show
that the non-straight curve (blue) is always longer
than the straight one (red).

The shortest path is called the geodesic, also on
a curved surface. Of course then it isn’t really
straight any more, just “as straight as possible”.

E.g., on the surface of a sphere, a great
circle is a geodesic. It is the path of an
aircraft flying straight ahead, turning
neither to port nor to starboard.



Pythagoras in space-time (1)
In space-time we have the co-ordinates time t , place x (and y , and
z). Points in space-time are called events. An example of events
is the location in space-time of the same human being at different
moments in his life.

Pythagoras is now a bit different, the general equation for the “inter-
val” between events P and Q is

|PQ|2 = ∆t2 − c−2 (∆x2+∆y2+∆z2
)
.

Note the minus sign and c, the speed of light. If P and Q are the
same human being at different moments of his life, then this interval
|PQ| is the time elapsed between these moments.

If we use compatible or “natural” units (like years and
light years), then c drops out. Then

|PQ|2 = ∆t2 −∆x2 −∆y2 −∆z2.



Pythagoras in space-time (2)
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In the figure now

a2 = c2
2 − d2,

b2 = c2
1 − d2,

c = c1 + c2,

and

a + b =
√

c2
2 − d2 +

√
c2

1 − d2≤

≤
√

c2
1 +

√
c2

2 = c1 + c2 = c.

In other words, now the straight
path (in time!) from event A to
event B is the longest of all paths,
not the shortest!



Pythagoras in space-time (3)

The journey through space and time of an object, or a human,
during their existence, is called their world line. The above result
is, that the length of the world line between two events, the proper
time spent on the journey, is maximal if the world line is straight –
or more generally, a geodesic. More meandering journeys from one
event to another are always shorter, i.e., they consume less proper
time of the travelling human or object – or of a ticking clock.

The question to ask is whether the journey has accelera-
tions. If, during the journey, one accelerates and brakes,
less time is used than when the traveller is in free fall.
From this follows the twin paradox: our intuition is infor-
med by Pythagoras, the metric, for space, telling us that
the detour is always the longer journey. In space-time it
is just the opposite!



The twin paradox
Solar system, year 2124

x

t

10
ye

ar
s

α Cen

√
52 − 42 = 3 years

Solar system, year 2114

4 light years

5
ye

ar
s

∆x =

∆
t

=
5

ye
ar

s

80% of speed of light

√
∆t2 −∆x2 = 3 years

Speed: ∆x
∆t = 4

5,

A concrete example. One brother tra-
vels to α Centauri, 4 light years away.
He uses for the journey 3 + 3 = 6
years of his own time, and upon
return, in the year 2124, is four years
younger than his twin brother who
stayed home.

The travelling twin is the one who
accelerates hard, brakes, accele-
rates and brakes again. The twin
staying home, by com-
parison, undergoes hardly
any accelerations at all.



The world line of the Mannerheim statue (1)

The Mannerheim statue stays in its place. . .



The world line of the Mannerheim statue (2)

. . . so its path through space is very straight.



The world line of the Mannerheim statue (3)

It is however not in a state of free fall: the Earth’s
surface pushes it continuously up, causing an
acceleration of 9, 8 m/s2 in the upward direction!



The world line of the Mannerheim statue (4)

Therefore the world line of the statue is not a geodesic:
it curves, in the curved space-time (red, conceptual art)
softly upward, about five metres after a journey of one
second (about 300 000 000 m) trough time.



The world line of a football (1)

On the other hand a football is in free fall. And
although its path in space is curved. . .



The world line of a football (2)

. . . its world line in the curved space-time surrounding the
Earth is a geodesic, i.e., “straight”!



How chronometric levelling works (1)

We have seen that the “proper time” of a clock, as it travels
during its existence into the future, is the shorter, the more
meandering its world line is. The world line of a clock resting on
the Earth’s surface is continually deviating from the straight line,
i.e., the geodesic, under the influence of gravity – more
precisely the resistance offered by the Earth’s surface, see the
above Mannerheim statue. Therefore it loses time compared to
a reference clock that is, e.g., floating far away in space.

Theory tells us, that the time lost is directly proportional
to the geopotential of the location of measurement, the
gravity potential of the Earth. Gravity is the resultant of
the Earth’s gravitation (attraction) and the centrifugal
force caused by the Earth’s rotation. Thus one may,
using precise clocks, measure potential differences
between points, i.e., carry out levelling.



How chronometric levelling works (2)

The equation is (Bjerhammar 1986, Vermeer 1983):

∆τ

τ
=

∆W
c2 ,

where τ is the time measured by a clock, ∆τ the time
difference between clocks, ∆W the potential difference
between points, and c the speed of light. We find quickly
that a geopotential difference of 1 m2/s2, i.e., a height
difference of 10 cm, can be measured with a relative
clock precision of 10−17. In 1983 this sounded still pretty
challenging, but in recent years, so-called optical lattice
clocks have been developed, the precision of which is
order-of-magnitude 10−18.



Optical lattice clock

The technological novelty with optical lattice clocks is,
that the wavelength used is in the optical range and not
in the microwave range, like for more traditional atomic
clocks. The more rapid oscillations allow for more
precise time keeping.

Optical lattice – Nature – Physics World

http://en.wikipedia.org/wiki/Optical_lattice
http://www.nature.com/news/precise-atomic-clock-may-redefine-time-1.13363
http://physicsworld.com/cws/article/news/2013/aug/27/new-atomic-clock-sets-the-record-for-stability


Time transfer by optic fibre

Measuring potential differences requires
the comparison of clocks. Especially over
longer distances, this is challenging on this
level of precision.

In Germany, the Physikalisch-Technische Bundesanstalt
and the Max-Planck-Institut für Quantenphysik have
developed a method in which one can use the
pre-existing optic-fibre networks used by the Internet.
Experiments (PTB/MPQ 2012) have shown this to be a
working solution over distances of even 920 km.
However, the signal amplifiers placed at regular
distances along the cables must be replaced by specially
manufactured ones.

https://www.ptb.de/en/aktuelles/archiv/presseinfos/pi2012/pitext/pi120427.html


Applications

There are many applications for optical lattice clocks. Already in
data communicatons, precise time keeping can be critical, and
there, the new clocks will undoubtedly find use.

In theoretical physics the clocks will allow an even more precise
testing of the general theory of relativity.

The most fascinating field of application will however be
geodesy. One should note that, though the technology
has in generally progressed, the most precise technique
for measuring height differences continues to be precise
levelling with traditional levelling instruments. The
technique has many hard to control sources of error, part
of them systematic. Perhaps the time has come for a
new, very different levelling technology.

In Finland MIKES does optical lattice clock research.



Geodetic infrastructure

As the technology matures, surely permanently operating
heighting stations will be built interlinked with optic-fibre networks,
in the same way as the already existing global network of
permanently operating GNSS stations. In this way, not only a “zero
order” height network is obtained, serving as a fundamental height
reference, but monitoring of vertical motions of the Earth’s crust
becomes possible.

A minor problem is posed by island points far from the
optic-fibre network, as well as by linking different
continents together: installing signal amplifiers into
pre-existing ocean-floor cables isn’t straightforward.
Perhaps for this purpose, synchronization using GNSS
systems could be used, as originally proposed in
Vermeer (1983). Such measurements would last for
years.



The German initiative

In Germany in 2014, a so-called Collaborative Research Centre
(Sonderforschungsbereich) was started:

Geo-Q, “Relativistic geodesy and gravimetry with quantum sensors”

with federal funding C11 million for the fist four years. Developing
chronometric levelling is part of this project.

DFG advert - Leibniz University Hannover - PTB text

http://www.arbeitsplatz-erde.de/

http://www.dfg.de/en/research_funding/programmes/list/projectdetails/index.jsp?id=239994235
http://www.uni-hannover.de/en/aktuell/online-aktuell/news/15085/index.php?action=print
http://www.ptb.de/en/aktuelles/archiv/presseinfos/pi2014/pitext/pi140519.html
http://www.arbeitsplatz-erde.de/


Thank you for your interest!
“What good is a newborn baby?”

– Benjamin Franklin, 1783, on aerial balloon experiments
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Epilogue: Einstein’s long shadow
Fermat discovered the principle according to which light travels

between two points along the fastest path.

Gauss discovered, simultaneously with János Bolyai and

Nikolai Lobachevski, non-Euclidean geometry, and developed

the theory of curved spaces.

Hamilton generalized the Fermat principle to apply to the

motion of objects .Hamiltonian mechanics. He disn’t yet grasp

why this was even possible. . .

De Broglie did grasp this: also matter is a wave motion (and

conversely, light is made up of photons) .quantum theory,

particle–wave dualism.

Also the geodesics of relativity theory are paths like those of

Hamilton, or Fermat. The are related to the

concept of the absolute derivative in curved

space-time, Levi-Civita’s wonderful idea.

To this could still be added Pythagoras,

Riemann, Maxwell, . . .


